
© 2024 Oreans Technologies

Protecting Better with Themida, WinLicense
and Code Virtualizer

Code Virtualizer

Total Obfuscation against Reverse Engineering

by Oreans Technologies

Code Virtualizer is a powerful obfuscation system for
Windows, Linux and Mac OS X applications that helps

developers to protect their sensitive code areas against
Reverse Engineering with very strong obfuscation code,

based on code virtualization.

Themida
Advanced Windows software protection

Themida is an advanced Windows software protection
system, developed for software developers who wish to

protect their applications against advanced reverse
engineering and software cracking.

WinLicense combines the power of software protection (as
Themida), with the power of advanced license control. It

offers a wide range of powerful and flexible techniques that
allow developers to securely distribute trial versions of their

applications.

by Oreans Technologies

by Oreans Technologies

Advanced Windows software protection & licensing

WinLicense

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or
from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable
for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this
document.

Printed: November 2024

Protecting Better with Themida, WinLicense
and Code Virtualizer
© 2024 Oreans Technologies

5Contents

© 2024 Oreans Technologies

Table of Contents

Part I Introduction 7

Part II Test Cases 9

... 101 Trial/Registration Scheme

... 10Global Variable

... 11Registration Function

... 13Using an External DLL

... 14Trial Expirations

... 152 Protecting Important Routines

... 163 Scheme for Serial Numbers Registration

Part III General Protection Advise 17

... 181 Delayed Cracking Detection

... 182 Protecting Sensitive Strings

... 193 Reporting Application Status

... 194 Slow Validation

... 205 Utilizing Limited Functionality

... 206 Relocate Sensitive Data

... 207 Monitor your Memory Content

... 218 Securing Sensitive Data in the Registry

... 219 Implement Your Unique Ideas

Part IV Contact us 23

Part

I

8 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

1 Introduction

The goal of this guide is to assist developers in enhancing the security of their software using

the SecureEngine Technology (which is available in Themida, WinLicense and Code Virtualizer).

This guide is crafted for everyday programmers who may not be familiar with software security,

providing them with basic yet effective strategies to bolster the security of their applications.

Utilizing the SecureEngine Technology can be an excellent strategy to safeguard your software

when applied correctly within your application. However, if a developer haphazardly inserts the

SecureEngine Technology protection macros into their application without adequately

shielding crucial routines, it could be easy for crackers to bypass the protection, almost as if the

application wasn't protected at all.

It is crucial to identify and understand which routines might be targeted by crackers within your

application. Focusing your protective efforts on these vulnerable routines with the

SecureEngine Technology is key. It is unnecessary to secure functions that hold no value for a

cracker, such as functions that operate identically in both trial and registered modes.

We aim to regularly update this guide with new information and insights to help you enhance

the security of your applications in collaboration with Themida, WinLicense or Code Virtualizer.

Moreover, we encourage you to implement your own ideas to fortify your application's security.

If you wish to share your strategies with us for potential inclusion in this guide, we warmly

welcome your contributions!

Part

II

10 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

2 Test Cases

In this section, we will explore how to utilize the SecureEngine protection macros in various

scenarios. You don't have to implement all the suggested solutions in your application; just

choose the one(s) that best suit your specific needs.

The key is to pinpoint the sensitive code areas within your application - these are parts of the

code that are crucial for a cracker to scrutinize in order to understand how your application

functions, potentially allowing them to alter or redirect the execution flow. It's vital to shield

these sensitive code areas using the SecureEngine protection macros. In the upcoming topics,

you will find examples illustrating different types of sensitive code areas, assisting you in

identifying similar zones within your own application.

2.1 Trial/Registration Scheme

Many applications operate under a "Trial/Registration" scheme. This means the same

application can function in either trial or registered mode, depending on whether it has been

activated with a valid license or serial number. The method you use to verify if your application

is registered can vary. In the sections that follow, we will present different schemes that can be

adapted for various applications.

2.1.1 Global Variable

The scheme described below relies on a global variable to determine if the application is

operating in trial or registered mode.

Usually, the application will feature a routine that checks and validates a license, storing the

result in a global variable (we'll refer to it as "is_registered") that indicates whether the

application has been registered or not. Throughout various routines in the application, the

code references the is_registered variable to dictate different paths of execution based on the

registration status. In this scheme, the "is_registered" variable is a critical point of focus.

Here, there are two primary sensitive code areas to be aware of:

1. The routine that inspects and verifies the validity of the license.

2. Every instance in your code where the is_registered variable is accessed or modified.

It's essential to secure all access points to the is_registered variable. Failure to do so can allow

a cracker to locate various checkpoints where the variable is assessed to control important code

pathways (pertaining to trial or registration). This could expose a vulnerability in your

trial/registration scheme, making it easier for them to breach your application. They would

simply need to modify the in-memory value of the is_registered variable, bypassing the

protective layers offered by the SecureEngine technology.

Example (In red you can see all sensitive code areas):

int main(void)
{

11Test Cases

© 2024 Oreans Technologies

VIRTUALIZER_START

// some code

is_registered = CheckLicense();

// some code

VIRTUALIZER_END
}

int MyFunction1(void)
{

VIRTUALIZER_START

if (is_registered)
{

// execute code for registered version
}
else
{

// execute trial code
}

VIRTUALIZER_END
}

In the example mentioned above, it's evident that all the sensitive code sections are

encompassed between the VIRTUALIZER_START/END markers. Make sure not to leave any

sensitive code area without a VIRTUALIZER macro!

Tips to protect better

· To enhance security, consider not limiting the is_registered variable to a boolean value.

Instead, assign a random number to the is_registered variable to prevent it from serving

as a conspicuous flag (zero or one) that might attract the attention of a cracker. If it's

feasible, populate the is_registered variable with a different value each time the

application runs – this approach would offer even greater protection.

· Furthermore, if your "CheckLicense()" function primarily exists to assign a value to a

global variable, it might draw the attention of a cracker. This is particularly likely if the

function is fully virtualized and solely assigns a value to a global variable upon exit, clearly

indicating to the cracker that the "global variable" holds significant meaning. To mitigate

this, don't limit the function to just verifying the license. Incorporate additional

initialization tasks or functionalities within this function. This way, various variables will be

engaged and altered, and a diverse range of code (beyond just license verification) will be

executed, thereby diluting the focus on the license check.

2.1.2 Registration Function

The scheme outlined below revolves around a function that is invoked each time the

application needs to determine if it's operating in the registered mode. Unlike the previous

scheme, this one doesn't rely on a global variable to keep track of whether the application is in

trial or registered mode.

12 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

In this scenario, there are two sensitive code areas to pay attention to:

1. The routine that verifies the license's validity, which we will refer to as the "CheckLicense()"

function.

2. Every instance where the "CheckLicense()" function is called in your code.

It is imperative to secure all the routines where the CheckLicense() function is invoked. If not, a

cracker might identify that the virtualized function (referred to here as "XXXXX", which

correlates with CheckLicense()) triggers different execution paths depending on whether it's

operating in trial or registered mode. Consequently, they could simply alter the entry point of

the CheckLicense() function to return the "registered" status, bypassing the virtualized code

entirely. This would enable them to breach your application without having to navigate

through the protective virtualized code barriers.

Example (In red you can see all sensitive code areas):

bool CheckLicense(void)
{

VIRTUALIZER_START

// your code that reads and check the license

// return if license is valid or not

VIRTUALIZER_END

}

int MyFunction1(void)
{

VIRTUALIZER_START

if (CheckLicense())
{

// execute code for registered version
}
else
{

// execute trial code
}

VIRTUALIZER_END
}

int MyFunction2(void)
{

VIRTUALIZER_START

if (CheckLicense())
{

// execute code for registered version
}
else
{

// execute trial code
}

VIRTUALIZER_END
}

13Test Cases

© 2024 Oreans Technologies

In the example provided above, you can observe that all sensitive code regions are enclosed

within the VIRTUALIZER_START/END markers. Ensure no sensitive code area is left without a

VIRTUALIZER macro!

Tips to protect better

· To boost your defense mechanisms, consider not relying solely on the CheckLicense()

function to determine the registration status of the application. Introducing secondary

functions (or more) to validate the license could be a stronger strategy. This way, a

cracker would be confronted with multiple barriers, having to bypass several functions

(like CheckLicenseType1(), CheckLicenseType2(), etc.) that are tasked with license

verification. While a cracker might manipulate the execution pathway of

CheckLicenseType1(), the conflicting reports from different functions (with one indicating

"registered" and another "not registered") could alert you to potential breaches, thus

enhancing the security of your application.

2.1.3 Using an External DLL

When you use an external DLL to export a function that determines whether your application is

registered, you need to take special care. Crackers can bypass your registration scheme simply

by altering the return value of the exported function in your DLL. A common mistake that eases

the job for crackers is assigning recognizable names to the exported validation function, like

"IsRegistered" or "CheckRegistration". This allows crackers to quickly identify and alter the

return value of the function in the DLL, possibly unlocking the "registered" mode of the

application.

Here are some straightforward tips:

· Choose Unrecognizable Names: Avoid giving your validation function in the DLL an

easily recognizable name. Crackers often start by identifying all exported names in an

external DLL linked to your application, gaining insights into the DLL's functionality and

potentially locating a sensitive registration-related function. Using complex, mangled

names for exported functions in a sensitive DLL can be more secure.

· Implement Multiple Validation Steps: Don't rely solely on a single exported function in

the DLL to determine the registration status. Consider the potential outcomes if a cracker

alters the output value of a registration function. Could this enable them to use your

application as if it were registered without any issues, or would it cause a crash later on?

Despite using a robust validation function with strong cryptography, a cracker might still

manipulate the output value following your complex mathematical calculations. To

counter this, alongside your primary registration function ("RegFunction1"), implement

additional functions that conduct full or partial license validations independently of

"RegFunction1". This strategy makes it difficult for crackers, even if they patch

"RegFunction1" to return "registered" consistently, as other validation functions may not

confirm the "registered" status.

14 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

· Utilize the VIRTUALIZER Macro: Incorporate a VIRTUALIZER macro within the validation

functions of your sensitive DLL. Extend this precaution to your main EXE or other DLLs,

especially in sections of the code that call upon the validation function in your sensitive

DLL.

· Enhance DLL Security: Ensure that your DLL isn't solely responsible for determining the

application's registered status. Be aware that some crackers might replace your DLL

entirely with a version that bypasses the implemented code, only returning the expected

values for all exported functions. This substitution means that your application might end

up calling the cracker's DLL instead of your original one. To prevent this, link your DLL

closely with your EXE, allowing the EXE to verify the successful loading and operation of

your DLL. Concurrently, enable your DLL to confirm that it operates within your EXE's

process space, preventing unauthorized use in other applications.

2.1.4 Trial Expirations

Most shareware applications are designed to expire after a set number of days, uses, or on a

predetermined date. Generally, the application needs to save this "expiration counter" in a

system location that isn't removed when the application is closed or uninstalled. On Windows

systems, developers often save the trial expiration information in the Windows Registry or an

external file. This data is then checked each time the application starts to read the current

expiration status.

Before settling on a storage location for the trial expiration data, consider the following

potential scenarios and how your application would respond:

· What would happen if a cracker adjusts the system clock to a date years before or after the

current date and then launches your application for the first time?

· How would your application react if the cracker reverses the date by days or years after your

application has been launched for the first time?

· What would occur if the cracker locates one of the places where the trial information is stored

and deletes that Registry entry or specific file?

To counter these basic attack strategies that crackers (or even ordinary users) might use on an

application with trial expiration, it's crucial to develop solutions. A primary step is to not

depend on a single storage location for the trial expiration information. Additionally, maintain a

record of the current date in a separate location to perform initial checks that confirm the

system clock hasn't been turned back since the last application launch. For more strategies on

storing trial expiration information, refer to this guide.

It's important to note that the SecureEngine technology cannot secure the information stored

in the Windows Registry or external files. However, you should protect all code that accesses

sensitive locations (Registry/Files) to read and record the trial expiration data. Ensure that this

code is enclosed within a VIRTUALIZER macro.

15Test Cases

© 2024 Oreans Technologies

2.2 Protecting Important Routines

In certain situations, you may possess significant algorithms that you wish to shield from

inspection, preventing reverse engineering by competitors. Utilizing the SecureEngine

protection macros, you can secure these sensitive routines. However, be aware that the

execution of protected (or virtualized) code will operate at a considerably slower pace

compared to its original version. Specifically, if your algorithm contains a tight loop (a segment

that iterates numerous times), you might want to reconsider safeguarding that specific

segment or employ a more lightweight Virtual Machine for its protection.

Solution 1 (Removing the Tight Loop):

int MySecretFunction(void)
{

TIGER_WHITE_START

// some code

TIGER_WHITE_END

 // tight loop here. It's outside of the macro markers:

 for (int i = 0; i < 0x100000; i++)
 // your code

TIGER_WHITE_START

// some code

TIGER_WHITE_END
}

Solution 2 (Employing a Lightweight Virtual Machine (e.g., "FISH_LITE") for Your Tight Loop):

int MySecretFunction(void)
{

TIGER_WHITE_START

// some code

TIGER_WHITE_END

FISH_LITE_START

 // tight loop here. Virtualized with FISH_LITE VM:

for (int i = 0; i < 0x100000; i++)
 // your code

FISH_LITE_END

TIGER_WHITE_START

// some code

TIGER_WHITE_END
}

16 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

2.3 Scheme for Serial Numbers Registration

Applications often require registration via a serial number. Here, we share insights on fortifying

your serial number scheme against potential cracking attempts:

· Embed the Verification Routine in a "VIRTUALIZER" Macro: Ensure the routine that

validates the serial number is housed within a "VIRTUALIZER" macro. This step forms a

primary line of defense against tampering.

· Implement Multi-Faceted Initialization Steps Within the Validation Routine: Crackers

may attempt to manipulate the return value of your validation routine. To counter this,

avoid over-reliance on the return value alone. Instead, initiate other steps within the

validation routine to prepare your application to operate in registered mode.

· Use Serial Numbers to Influence Code Execution Flow: When feasible, utilize digits

from the input serial number to dictate varied paths in your code's execution. For

instance, configure your serial number such that the third number (s3) equates to the

sum of the first (s1) and second (s2) numbers. This logic can then be integrated into a

separate function that is activated only in registered mode:

// if the validation routine was patched, a different function will

// be called here, hence it will crash or produce a different functionality

ExecuteFunction(TableFunctions + XXXX + s3 - s2 - s1);

Adopt Late Crash Protocols: Should you detect a compromise in the validation routine,

consider implementing a "late crash" strategy or altering the application's behavior. A "late

crash" strategy avoids immediate error notifications like "Cracking attempt detected." Instead,

retain a note of the breach (possibly in a variable) to indicate your application is undergoing

patching. At a later point, you can induce a crash in a different function or delay the response

to the detected attack by several minutes.

This guide outlines a basic framework for bolstering the security of your serial number scheme.

By incorporating additional checks, you can significantly amplify the protective measures in

your application.

Part

III

18 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

3 General Protection Advise

This section outlines some universal protection strategies that can significantly hinder crackers'

attempts to breach your application.

3.1 Delayed Cracking Detection

In many cases, you might notice that your application is being hacked or has been altered

partially. For instance, you can set up two different processes/functions that verify a license or a

serial number, and both should give the same result if a valid license or serial number is

entered.

Usually, a hacker might notice the first process/function that checks the license or serial

number and will attempt to bypass or modify it to get the desired outcome. Your second

verification process/function will then return the actual result, helping you realize that the first

process/function has been compromised. At this point, avoid displaying error messages like

"Incorrect License" or "Cracking Attempt Detected," as the hacker will quickly understand that

there's another process performing additional checks and will attempt to find and modify that

as well.

Instead of alerting the hacker that something has gone awry after the patching is detected,

save this information in an internal variable or flag indicating that your application is in the

"cracking stage." Later, when you observe that your application is in the "cracking stage," alter

its behavior or generate an error when a specific function is performed. This makes it harder for

the hacker to identify the issue's source. For instance, if your application stores data in a

database, a file, or on a CD/DVD, you could start copying incorrect information to the

database/file/DVD when you detect that your application is in the "cracking stage," causing it

to operate incorrectly but continue running.

Another option is to wait a few hours (or even days!) once you realize that your application is in

the "cracking stage" before causing it to crash or malfunction. Of course, this approach is not

suitable on some applications.

3.2 Protecting Sensitive Strings

Sensitive strings are specific phrases or words that could potentially aid crackers in attacking

vital validation routines or in realizing that their cracking attempt was unsuccessful. This can

occur, for instance, when a message such as "cracking/patching detected" is displayed.

Typically, all strings are visible within an application when it is running, even if you are using a

software protector. Despite protection measures, these strings or data have to be decrypted

when the application is operating so it can function as expected. Hence, it is prudent to keep

sensitive strings encrypted even during the compilation phase. This way, you only decrypt them

when they are about to be displayed during runtime.

SecureEngine facilitates this process through the "Virtualize Strings" option found in the Extra

Options panel. When you use this option, all the strings mentioned within a VIRTUALIZER

19General Protection Advise

© 2024 Oreans Technologies

macro will be encrypted during the protection stage and will only be decrypted (automatically)

when they are about to be used. Ensure that you encase all code referencing a sensitive string

within a VIRTUALIZER_START/END macro. This guarantees their encryption as intended. Here's

an example:

int MyFunction1(void)
{

VIRTUALIZER_START

if (is_registered)
{

printf("Your application has been registered");
}

VIRTUALIZER_END
}

Remember, it's not necessary to encrypt or safeguard all the strings in your application since

many of them might not be of interest to a cracker. Generally, strings that are consistently

visible in your application (whether in trial or registered mode) are not deemed sensitive.

3.3 Reporting Application Status

It's important to effectively communicate the registration status of your application to your

customers. A good way to inform them that the application is operating in "unregistered"

mode is by displaying a message in the "About" dialog, which should be generated dynamically

if possible. Moreover, the function that verifies whether your application is running in

unregistered mode should be separate from the one validating the license.

Avoid relying on a single validation function to verify a license or serial number and determine

if your application is in trial or registered mode. Instead, utilize multiple validation functions to

ascertain if any of them have been altered or "patched", potentially leading to a delayed crash.

3.4 Slow Validation

In your application, you might have one or more validation routines that check the correctness

of entered licenses or serial numbers. Usually, developers create a routine that returns a value

indicating whether the validation was successful. However, this makes it easier for crackers to

inspect and modify the exit code of the function to see the outcomes of different return values.

Often, developers store the validation outcome in a global variable or another location, quickly

displaying a message about whether the validation was successful.

To enhance the security of your main validation routine, try not to instantly notify the user

about the validation result. Instead, require a restart of the application to complete the

registration. During the initialization phase, check the result of the validation. This strategy will

divert the cracker's full attention away from the main validation routine, encouraging them to

explore different areas of your program. This also slows down the cracking process, as the

cracker will need to restart your application multiple times.

20 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

3.5 Utilizing Limited Functionality

If your application has the option to run in either trial or registered mode, it's more beneficial

to release two distinct versions of your application. One version should only operate in "trial

mode," lacking the "special functionality" that is exclusively available in the "registered mode."

Only your customers should have access to this registered version, keeping it from being

publicly available.

While it's still possible for the registered version to be distributed without authorization, this

strategy essentially grants you more control over who can access the registered version of your

application.

However, this approach might not be suitable for every application. In cases where it's not

feasible to distribute both a limited and a registered version, we recommend implementing one

or more of the strategies outlined in this guide to safeguard your application.

3.6 Relocate Sensitive Data

When validating a license or serial number entered through a registration dialog, it's more

secure to transfer and transform this information across different memory areas. Here’s how

you can do this:

1. First, retrieve the entered serial number.

2. Conduct initial checks and transfer the first transformed version of the serial number to a

different memory location.

3. Perform another transformation check and transfer it to yet another memory location, and

so on.

Ensure that all these processes are shielded with a VIRTUALIZER macro. This step adds a layer

of complexity for potential crackers, making it easier for them to lose track of the serial number

as it moves through various memory locations.

3.7 Monitor your Memory Content

A common error some developers make is retaining valid serial numbers within their

application or revealing a correct serial number in memory during comparison with the entered

one. It is essential to ensure that, while your application remains unregistered or when a user

inputs an incorrect serial or registration number, no correct serial or registration numbers are

stored in the memory during your computations.

Crackers will scrutinize not only your validation code but also the allocated memory during

various phases of the validation process (or at the end of it) to see if any data "magically"

manifests in memory. To enhance security, it's advisable to use a CRC (Cyclic Redundancy

Check) to verify the accuracy of the entered serial or registration number, instead of

juxtaposing the input data with a pre-coded valid serial number.

21General Protection Advise

© 2024 Oreans Technologies

While it is crucial to encapsulate your validation routine within a VIRTUALIZER macro, it's

important to note that tools like Themida, WinLicense or Code Virtualizer secure the

instructions in your routine but not the memory data utilized within your code. The memory

accessed or modified during your validation process remains unprotected, both in your original

and safeguarded application.

3.8 Securing Sensitive Data in the Registry

Applications monitoring trial or registration expiration often store sensitive details within the

Windows Registry to track the current expiration status or counter. It's crucial to note that

despite using a Software Protector, this information remains visible in the Windows Registry,

irrespective of whether the code that writes or accesses the Registry is virtualized or obfuscated.

Take, for instance, an application that records the trial status in the Registry key

HKLM/Software/Microsoft/Shared/trial_status. Once a cracker identifies that this Registry key is

the storage point for the trial status, they can release a crack that merely deletes that Registry

key, resetting the trial on any computer.

A more secure approach would be to create an array of strings (preferably encrypted), termed

"ArrayTrialEntries", that lists various Registry key names where the trial status might be stored.

Let's assume you have 20 different potential storage locations. During runtime, you extract a

"unique" identifier from the current machine (utilizing the CPUID instruction, HDD serial

number, BIOS serial, etc.) and perform mathematical operations to generate a number

between 1 and 20. If the final result for the current machine is 5, you would then store the trial

expiration details in the Registry key designated by ArrayTrialEntries[5]. In this scenario,

although a cracker might discern that a Registry entry is being used to store trial information,

releasing a crack to delete that specific Registry key won't be universally effective, only

impacting computers where the computed machine number equaled 5.

Utilize the SecureEngine protection macros to secure all code that chooses and accesses the

Registry Keys, and maintain the encryption of all strings. This approach will make it substantially

harder for a cracker to decipher the process you're employing to select one Registry key over

another.

3.9 Implement Your Unique Ideas

Employing a software protection (like Themida, WinLicense or Code Virtualizer) can be an

effective strategy to guard against cracking attempts, especially when used judiciously.

Enhancing this with your original protection strategies will further bolster the defense of your

software.

You don't need to be a security expert or have knowledge about cracking techniques to fortify

your application. Understanding your application intimately and incorporating additional

safeguards to shield sensitive code sections is key. For instance, a cracker's primary aim would

be to activate the "registered mode" of your application without a valid license. They generally

aren't interested in other facets, only in enabling the registered mode. Given this, you could

22 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

intensify security by implementing supplementary verification steps within different routines,

such as:

· Confirming the presence of a legitimate license file.

· Utilizing a secondary function that also scrutinizes the license.

· Ensuring that data extracted from the license file conforms to the expected format.

· Applying an internal CRC to verify the accuracy of license data, among others.

By integrating numerous small additional verification steps into your source code, you elevate

the level of security within your application. Moreover, safeguarding these checks with the

VIRTUALIZER macros will significantly complicate the task for crackers.

Part

IV

24 Protecting Better with Themida, WinLicense and Code Virtualizer

© 2024 Oreans Technologies

4 Contact us

If you want to share with us some of your protection ideas to be included in this guide or have

any questions, we are happy to hear from you. You can contact us at support@oreans.com

mailto:support@oreans.com

	Introduction
	Test Cases
	Trial/Registration Scheme
	Global Variable
	Registration Function
	Using an External DLL
	Trial Expirations

	Protecting Important Routines
	Scheme for Serial Numbers Registration

	General Protection Advise
	Delayed Cracking Detection
	Protecting Sensitive Strings
	Reporting Application Status
	Slow Validation
	Utilizing Limited Functionality
	Relocate Sensitive Data
	Monitor your Memory Content
	Securing Sensitive Data in the Registry
	Implement Your Unique Ideas

	Contact us

